Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Pharmacol Exp Ther ; 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-20235777

ABSTRACT

We hypothesized that exosomal microRNAs (miRNAs) could be implied in the pathogenesis of thromboembolic complications in COVID-19. We isolated circulating exosomes from COVID-19 patients and then we divided our population in two arms based on the D-dimer level on hospital admission. We observed that exosomal miR-145 and miR-885 significantly correlate with D-Dimer levels. Moreover, we demonstrate that human endothelial cells express the main cofactors needed for SARS-CoV-2 internalization, including ACE2, TMPRSS2, and CD-147. Interestingly, human endothelial cells treated with serum from COVID-19 patients release significantly less miR-145 and miR-885, exhibit increased apoptosis, and display significantly impaired angiogenetic properties compared to cells treated with non-COVID-19 serum. Taken together, our data indicate that exosomal miR-145 and miR-885 are essential in modulating thromboembolic events in COVID-19. Significance Statement In this work, we demonstrate for the first time that two specific microRNA (namely miR-145 and miR-885) contained in circulating exosomes are functionally involved in thromboembolic events in COVID-19. Our findings are especially relevant to the general audience when considering the emerging prominence of post-acute sequelae of COVID-19 systemic manifestations known as Long-COVID.

2.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2225011

ABSTRACT

Oxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome. Thus, we collected serum from COVID-19 patients on hospital admission, and we incubated these sera with human endothelial cells, comparing the effects on the generation of reactive oxygen species (ROS) and lipid peroxidation between patients who survived and patients who did not survive. We found that the serum from non-survivors significantly increased lipid peroxidation. Moreover, serum from non-survivors markedly regulated the expression levels of the main markers of ferroptosis, including GPX4, SLC7A11, FTH1, and SAT1, a response that was rescued by silencing TNFR1 on endothelial cells. Taken together, our data indicate that serum from patients who did not survive COVID-19 triggers lipid peroxidation in human endothelial cells.

3.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2010118

ABSTRACT

T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.


Subject(s)
Endothelial Cells/pathology , Hepatitis A Virus Cellular Receptor 1/metabolism , MicroRNAs , Angiotensin-Converting Enzyme 2 , COVID-19 , Dengue , Endothelial Cells/metabolism , Hemorrhagic Fever, Ebola , Humans , Immunoglobulins , MicroRNAs/genetics , Mucins , Neuropilin-1/genetics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Stroke , Zika Virus , Zika Virus Infection
4.
Nutrients ; 13(11)2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502476

ABSTRACT

l-Arginine is involved in many different biological processes and recent reports indicate that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated systematic overview of the current evidence on the functional contribution of L-Arginine in COVID-19, describing its actions on endothelial cells and the immune system and discussing its potential as a therapeutic tool, emerged from recent clinical experimentations.


Subject(s)
Arginine/metabolism , COVID-19/metabolism , Endothelial Cells/metabolism , Immune System/metabolism , SARS-CoV-2/pathogenicity , Animals , Arginine/therapeutic use , COVID-19/immunology , COVID-19/virology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/virology , Host-Pathogen Interactions , Humans , Immune System/drug effects , Immune System/immunology , Immune System/virology , Nitric Oxide/metabolism , SARS-CoV-2/immunology , COVID-19 Drug Treatment
5.
Noncoding RNA ; 7(1)2021 Feb 02.
Article in English | MEDLINE | ID: covidwho-1060055

ABSTRACT

Neuropilin-1 is a transmembrane glycoprotein that has been implicated in several processes including angiogenesis and immunity. Recent evidence has also shown that it is implied in the cellular internalization of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). We hypothesized that specific microRNAs can target Neuropilin-1. By combining bioinformatic and functional approaches, we identified miR-24 as a regulator of Neuropilin-1 transcription. Since Neuropilin-1 has been shown to play a key role in the endothelium-mediated regulation of the blood-brain barrier, we validated miR-24 as a functional modulator of Neuropilin-1 in human brain microvascular endothelial cells (hBMECs), which are the most suitable cell line for an in vitro blood-brain barrier model.

SELECTION OF CITATIONS
SEARCH DETAIL